Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357931

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , NAD , Feminino , Gravidez , Humanos , Camundongos , Animais , NAD/metabolismo , Niacinamida , Fenótipo , Metaboloma , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
3.
Front Cell Infect Microbiol ; 13: 1205829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692163

RESUMO

Introduction: Mycobacteria assemble a complex cell wall with cross-linked peptidoglycan (PG) which plays an essential role in maintenance of cell wall integrity and tolerance to osmotic pressure. We previously demonstrated that various hydrolytic enzymes are required to remodel PG during essential processes such as cell elongation and septal hydrolysis. Here, we explore the chemistry associated with PG cross-linking, specifically the requirement for amidation of the D-glutamate residue found in PG precursors. Methods: Synthetic fluorescent probes were used to assess PG remodelling dynamics in live bacteria. Fluorescence microscopy was used to assess protein localization in live bacteria and CRISPR-interference was used to construct targeted gene knockdown strains. Time-lapse microscopy was used to assess bacterial growth. Western blotting was used to assess protein phosphorylation. Results and discussion: In Mycobacterium smegmatis, we confirmed the essentiality for D-glutamate amidation in PG biosynthesis by labelling cells with synthetic fluorescent PG probes carrying amidation modifications. We also used CRISPRi targeted knockdown of genes encoding the MurT-GatD complex, previously implicated in D-glutamate amidation, and demonstrated that these genes are essential for mycobacterial growth. We show that MurT-rseGFP co-localizes with mRFP-GatD at the cell poles and septum, which are the sites of cell wall synthesis in mycobacteria. Furthermore, time-lapse microscopic analysis of MurT-rseGFP localization, in fluorescent D-amino acid (FDAA)-labelled mycobacterial cells during growth, demonstrated co-localization with maturing PG, suggestive of a role for PG amidation during PG remodelling and repair. Depletion of MurT and GatD caused reduced PG cross-linking and increased sensitivity to lysozyme and ß-lactam antibiotics. Cell growth inhibition was found to be the result of a shutdown of PG biosynthesis mediated by the serine/threonine protein kinase B (PknB) which senses uncross-linked PG. Collectively, these data demonstrate the essentiality of D-glutamate amidation in mycobacterial PG precursors and highlight the MurT-GatD complex as a novel drug target.


Assuntos
Amidas , Parede Celular , Ácido Glutâmico , Mycobacterium smegmatis , Peptidoglicano , Amidas/metabolismo , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo
4.
Clin Genet ; 104(1): 114-120, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36951206

RESUMO

The NADSYN1 gene [MIM*608285] encodes the NAD synthetase 1 enzyme involved in the final step of NAD biosynthesis, crucial for cell metabolism and organ embryogenesis. Perturbating the role of NAD biosynthesis results in the association of vertebral, cardiac, renal, and limb anomalies (VCRL). This condition was initially characterized as severe with perinatal lethality or developmental delay and complex malformations in alive cases. Sixteen NADSYN1-associated patients have been published so far. This study illustrates the wide phenotypic variability in NADSYN1-associated NAD deficiency disorder. We report the clinical and molecular findings in three novel cases, two of them being siblings with the same homozygous variant and presenting with either a very severe prenatal lethal or a mild phenotypic form. In addition to an exhaustive literature, we validate the expansion of the spectrum of NAD deficiency disorder. Our findings indicate that NAD deficiency disorder should be suspected not only in the presence of the full spectrum of VCRL, but even a single of the aforementioned organs is affected. Decreased plasmatic levels of NAD should then strongly encourage the screening for any of the genes responsible for a NAD deficiency disorder.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , NAD , Feminino , Humanos , Gravidez , Homozigoto , Coluna Vertebral/anormalidades , Síndrome
5.
Eur J Med Genet ; 66(3): 104698, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649848

RESUMO

INTRODUCTION: Nicotinamide adenine dinucleotide (NAD) is an essential cosubstrate/coenzyme in multiple cellular redox processes and a substrate in several non-redox reactions. NADSYN1 encodes NAD synthetase 1, an enzyme in the NAD de novo synthesis pathway and the Preiss-Handler pathway, and biallelic pathogenic variants causes NAD deficiency associated with vertebral, cardiac, renal and limb defects. Szot et al. and Kortbawi et al. have reported a total of seven patients with NADSYN1 associated congenital NAD deficiency disorder with the oldest patient being seven years old. PATIENT DATA: We present a male patient age 30 with a height of 130 cm and numerous skeletal malformations including segmentation defects of the spine, rib anomalies and unequal leg length as well as bilateral ptosis, cleft palate and asymmetric dysmorphic facial features. The patient underwent surgery for an aortic stenosis due to a bicuspid valve. No malformations of the kidneys or urinary tract were identified. RESULTS: Trio exome sequencing revealed a homozygous missense variant in NADSYN1 c.1717G > A (p.Ala573Thr). Both parents were unaffected carriers of the variant. Analysis of NAD levels showed that the patient had a lower NAD pool compared to his unaffected siblings. The NAD pool rose approximately 25% after supplementation with nicotinamide, a NAD precursor for the salvage pathway. CONCLUSION: The variant was previously reported in four patients and functional analyses by Szot et al. support the pathogenicity of the variant. We report an adult patient with NADSYN1 associated congenital NAD deficiency disorder and expand the phenotypic spectrum. We also present analysis of the NAD levels before and after supplementation with nicotinamide.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Genética Médica , Deformidades Congênitas dos Membros , Anormalidades Musculoesqueléticas , Adulto , Criança , Humanos , Masculino , NAD , Niacinamida
6.
J Biol Chem ; 298(9): 102385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985424

RESUMO

Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Doenças Neurodegenerativas , Trifosfato de Adenosina , Asparagina/genética , Aspartato-Amônia Ligase/química , Atrofia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Células HEK293 , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Mutação
7.
Cell Death Dis ; 13(6): 566, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739087

RESUMO

The availability of asparagine is the limitation of cell growth and metastasis. Asparagine synthetase (ASNS) was an essential enzyme for endogenous asparagine products. In our study, ASNS-induced asparagine products were essential to maintain tumor growth and colony formations in vitro. But mutated ASNS which defected endogenous asparagine products still upregulated cell invasiveness, which indicated that ASNS promoted invasiveness by alternative pathways. Mechanically, ASNS modulated Wnt signal transduction by promoting GSK3ß phosphorylation on ser9 and stabilizing the ß-catenin complex, as result, ASNS could promote more ß-catenin translocation into nucleus independent of endogenous asparagine. At the same time, ASNS modulated mitochondrial response to Wnt stimuli with increased mitochondrial potential and membrane fusion. In summary, ASNS promoted metastasis depending on Wnt pathway and mitochondrial functions even without endogenous asparagine products.


Assuntos
Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Neoplasias Pulmonares , Asparagina/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular Tumoral , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , beta Catenina/genética
8.
Am J Med Genet A ; 188(8): 2479-2484, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491967

RESUMO

Congenital nicotinamide adenine dinucleotide (NAD) deficiency disorders are associated with pathogenic variants in the genes NADSYN1, HAAO, and KYNU. These disorders overlap with the anomalies present in vertebral, anal, cardiac, tracheoesophageal, radial and renal, and limb anomalies (VATER/VACTERL) association and often result in premature death. Children who survive typically have developmental delays or intellectual disability. Here, we describe two patients with compound heterozygous variants in NADSYN1 who presented with cardiac and vertebral defects overlapping with the VATER/VACTERL association, although the patients did not satisfy criteria for the diagnosis of VATER/VACTERL due to their lack of limb anomalies and significant renal anomalies. One patient survived into childhood with developmental delays and may represent an expansion of the survival data for NADSYN1-associated NAD deficiency disorders. Interestingly, one patient had hypoplastic left heart syndrome (HLHS) and one had an aortic coarctation and transverse hypoplasia of the aortic arch, suggesting that NADSYN1 sequencing should be performed in children presenting with congenital anomalies related to VATER/VACTERL association and with HLHS and aortic arch abnormalities.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Anormalidades Múltiplas , Canal Anal/anormalidades , Criança , Esôfago/anormalidades , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Hérnia Diafragmática , Humanos , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , NAD , Coluna Vertebral/anormalidades , Traqueia/anormalidades
9.
Mol Biol Rep ; 49(5): 3713-3720, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35129766

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinomas (PDACs) is a malignant disorder and is the most common pancreatic cancer type. The malignant cells depend on the uptake of asparagine (Asn) for growth. The synthesis of Asn occurs through the enzyme asparagine synthetase (ASNS). Interestingly, ASNS is known as is direct target of nonsense-mediated RNA decay (NMD). We have previously reported that NMD major factor UPF1 mutations in the pancreatic tumors. However, the relationship between NMD and the level of ASNS is unknown. METHOD: We constructed point mutations by site-specific mutagenesis. To evaluate NMD magnitude, we assessed the expression ratio of an exogenously expressed wild-type and mutated ß-globin mRNA with N39 allele, and five known NMD targets. Then, reverse transcription-polymerase chain reaction (RT-PCR), RT-qPCR and western bolt to determine RNA or protein levels, after knockdown of endogenous UPF1 by small RNA interference in the cells. RESULTS: An RNA editing event (c.3101 A > G) at UPF1 transcripts resulting in an Asparagine (p.1034) changed to a Serine is found in one primary PDAC patient. The edited UPF1 increases the ability of degrading of NMD provoking transcripts, such as ß-globin mRNA with N39 allele and 5 out of 5 known endogenous NMD substrate mRNAs, including ASNS. In addition, ASNS mRNA is subjected to NMD degradation by virtue of its possessing uORFs at the 5'UTR. A reduction of endogenous ASNS RNA and the increased protein expression level is found either in the PDAC patient or in the cells with edited UPF1 at c.3101 A > G relative to the controls. CONCLUSIONS: This edited UPF1 found in the PDAC results in hyperactivated NMD, which is tightly correlation to elevated expression level of ASNS. The targeting of knockdown of ASNS may improve the antitumor potency in PDACs.


Assuntos
Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Neoplasias Pancreáticas , Transativadores , Asparagina/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Globinas beta/metabolismo
10.
Int J Neurosci ; 132(5): 439-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32938288

RESUMO

PURPOSE/AIM OF THE STUDY: Parkinson's disease (PD) is the second most common neurodegenerative disorder. Vitamin D deficiency is suggested to be related to PD. A genome-wide association study indicated that genes involved in vitamin D metabolism affect vitamin D levels. Among these genes, single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) and vitamin D binding protein (VDBP/GC) genes have also been demonstrated to be associated with PD risk. Our aim was to investigate the relevance of SNPs within the 7-dehydrocholesterol reductase/nicotinamide adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) locus and vitamin D 25-hydroxylase (CYP2R1) gene, which encode important enzymes that play a role in the vitamin D synthesis pathway, with PD and its clinical features. MATERIALS AND METHODS: Genotypes of 382 PD patients and 240 cognitively healthy individuals were evaluated by a LightSNiP assay for a total of 10 SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene. RESULTS: There were no significant differences in the allele and genotype distributions of any of the SNPs between any patient groups and healthy subjects. However, our results indicated that all of the SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene, except rs1993116, were associated with clinical motor features of PD including initial predominant symptom, freezing of gait (FoG) and falls as well as disease stage and duration of the disease. CONCLUSIONS: In conclusion, genetic variants of the DHCR7/NADSYN1 locus and the CYP2R1 gene might be related to the inefficient utilization of vitamin D independent from vitamin D levels, and it might result in differences in the clinical features of PD patients.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Doença de Parkinson , Vitamina D , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Transtornos Neurológicos da Marcha/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Vitamina D/metabolismo , Deficiência de Vitamina D
11.
Blood Adv ; 6(1): 212-224, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34535013

RESUMO

Asparaginase therapy is a key component of chemotherapy for patients with T-cell acute lymphoblastic leukemia (T-ALL). Asparaginase depletes serum asparagine by deamination into aspartic acid. Normal hematopoietic cells can survive due to asparagine synthetase (ASNS) activity, whereas leukemia cells are supposed to undergo apoptosis due to silencing of the ASNS gene. Because the ASNS gene has a typical CpG island in its promoter, its methylation status in T-ALL cells may be associated with asparaginase sensitivity. Thus, we investigated the significance of ASNS methylation status in asparaginase sensitivity of T-ALL cell lines and prognosis of childhood T-ALL. Sequencing of bisulfite polymerase chain reaction products using next-generation sequencing technology in 22 T-ALL cell lines revealed a stepwise allele-specific methylation of the ASNS gene, in association with an aberrant methylation of a 7q21 imprinted gene cluster. T-ALL cell lines with ASNS hypermethylation status showed significantly higher in vitro l-asparaginase sensitivity in association with insufficient asparaginase-induced upregulation of ASNS gene expression and lower basal ASNS protein expression. A comprehensive analysis of diagnostic samples from pediatric patients with T-ALL in Japanese cohorts (N = 77) revealed that methylation of the ASNS gene was associated with an aberrant methylation of the 7q21 imprinted gene cluster. In pediatric T-ALL patients in Japanese cohorts (n = 75), ASNS hypomethylation status was significantly associated with poor therapeutic outcome, and all cases with poor prognostic SPI1 fusion exclusively exhibited ASNS hypomethylation status. These observations show that ASNS hypomethylation status is associated with asparaginase resistance and is a poor prognostic biomarker in childhood T-ALL.


Assuntos
Asparaginase , Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Alelos , Asparaginase/uso terapêutico , Asparagina/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Linhagem Celular Tumoral , Criança , Metilação de DNA , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Prognóstico
12.
Nutrients ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959812

RESUMO

Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We conducted a systematic search of Medline, Embase, Web of Science and OpenGWAS updated in April 2021. The following keywords "vitamin D" and/or "single nucleotide polymorphisms (SNPs)" and "T1D" were selected to identify relevant articles. Seven SNPs (or their proxies) in six genes were analysed: CYP2R1 rs10741657, CYP2R1 (low frequency) rs117913124, DHCR7/NADSYN1 rs12785878, GC rs3755967, CYP24A1 rs17216707, AMDHD1 rs10745742 and SEC23A rs8018720. Seven case-control and three cohort studies were eligible for quantitative synthesis (n = 10). Meta-analysis results suggested no association with T1D (range of pooled ORs for all SNPs: 0.97-1.02; p > 0.01). Heterogeneity was found in DHCR7/NADSYN1 rs12785878 (I2: 64.8%, p = 0.02). Sensitivity analysis showed exclusion of any single study did not alter the overall pooled effect. No association with T1D was observed among a Caucasian subgroup. In conclusion, the evidence from the meta-analysis indicates a null association between selected variants affecting serum 25(OH)D concentrations and T1D.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Deficiência de Vitamina D/genética , Vitamina D/análogos & derivados , Adolescente , Adulto , Amidoidrolases/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Pré-Escolar , Colestanotriol 26-Mono-Oxigenase/genética , Estudos de Coortes , Família 2 do Citocromo P450/genética , Feminino , Humanos , Masculino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptores de Calcitriol/genética , Proteínas de Transporte Vesicular/genética , Vitamina D/genética , Proteína de Ligação a Vitamina D/genética , Vitamina D3 24-Hidroxilase/genética , Adulto Jovem
13.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835935

RESUMO

Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study investigated how genetic variations in humans affected the clinical presentation of COVID-19. In total, 646 patients with SARS-CoV-2 infection were divided into two groups: noncritical COVID-19 (n = 453; 70.12%) and a critical group (n = 193; 29.87%). Genotype data on the GC, NADSYN1, VDR, and CYP2R1 genes along with data on serum 25-hydroxyvitamin D levels were compiled in patients admitted to a major hospital in the United Arab Emirates between April 2020 and January 2021. We identified 12 single-nucleotide polymorphisms associated with the critical COVID-19 condition: rs59241277, rs113574864, rs182901986, rs60349934, and rs113876500; rs4944076, rs4944997, rs4944998, rs4944979, and rs10898210; and rs11574018 and rs11574024. We report significant associations between genetic determinants of vitamin D metabolism and COVID-19 severity in the UAE population. Further research needed to clarify the mechanism of action against viral infection in vitamin D deficiency. These variants could be used with vaccination to manage the spread of SARS-CoV-2 and could be particularly valuable in populations in which vitamin D deficiency is common.


Assuntos
COVID-19/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados , Adulto , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Calcitriol/metabolismo , Índice de Gravidade de Doença , Emirados Árabes Unidos , Vitamina D/sangue
14.
Genes (Basel) ; 12(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681008

RESUMO

Genetic perturbations in nicotinamide adenine dinucleotide de novo (NAD) synthesis pathway predispose individuals to congenital birth defects. The NADSYN1 encodes the final enzyme in the de novo NAD synthesis pathway and, therefore, plays an important role in NAD metabolism and organ embryogenesis. Biallelic mutations in the NADSYN1 gene have been reported to be causative of congenital organ defects known as VCRL syndrome (Vertebral-Cardiac-Renal-Limb syndrome). Here, we analyzed the genetic variants in NADSYN1 in an exome-sequenced cohort consisting of patients with congenital vertebral malformations (CVMs). A total number of eight variants in NADSYN1, including two truncating variants and six missense variants, were identified in nine unrelated patients. All enrolled patients presented multiple organ defects, with the involvement of either the heart, kidney, limbs, or liver, as well as intraspinal deformities. An in vitro assay using COS-7 cells demonstrated either significantly reduced protein levels or disrupted enzymatic activity of the identified variants. Our findings demonstrated that functional variants in NADSYN1 were involved in the complex genetic etiology of CVMs and provided further evidence for the causative NADSYN1 variants in congenital NAD Deficiency Disorder.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Doenças da Coluna Vertebral/congênito , Doenças da Coluna Vertebral/genética , Coluna Vertebral/anormalidades , Sequência de Aminoácidos , Animais , Células COS , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/química , Chlorocebus aethiops , Estudos de Coortes , Humanos , Mutação , Alinhamento de Sequência , Sequenciamento do Exoma
15.
Cell Death Dis ; 12(7): 709, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267184

RESUMO

Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Asparaginase/farmacologia , Proliferação de Células/efeitos dos fármacos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Quinuclidinas/farmacologia , Proteína Supressora de Tumor p53/agonistas , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
FEBS J ; 288(23): 6683-6699, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34227245

RESUMO

Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC), and recent findings have demonstrated independent and nonredundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that the expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS, and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1 supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.


Assuntos
Ácido Aspártico/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Ácido Aspártico/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolômica/métodos , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
17.
J Cancer Res Clin Oncol ; 147(11): 3169-3181, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34235580

RESUMO

PURPOSE: Glutamine plays an important role in cell viability and growth of various tumors. For the fetal subtype of hepatoblastoma, growth inhibition through glutamine depletion was shown. We studied glutamine depletion in embryonal cell lines of hepatoblastoma carrying different mutations. Since asparagine synthetase was identified as a prognostic factor and potential therapeutic target in adult hepatocellular carcinoma, we investigated the expression of its gene ASNS and of the gene GLUL, encoding for glutamine synthetase, in hepatoblastoma specimens and cell lines and investigated the correlation with overall survival. METHODS: We correlated GLUL and ASNS expression with overall survival using publicly available microarray and clinical data. We examined GLUL and ASNS expression by RT-qPCR and by Western blot analysis in the embryonal cell lines Huh-6 and HepT1, and in five hepatoblastoma specimens. In the same cell lines, we investigated the effects of glutamine depletion. Hepatoblastoma biopsies were examined for histology and CTNNB1 mutations. RESULTS: High GLUL expression was associated with a higher median survival time. Independent of mutations and histology, hepatoblastoma samples showed strong GLUL expression and glutamine synthesis. Glutamine depletion resulted in the inhibition of proliferation and of cell viability in both embryonal hepatoblastoma cell lines. ASNS expression did not correlate with overall survival. CONCLUSION: Growth inhibition resulting from glutamine depletion, as described for the hepatoblastoma fetal subtype, is also detected in established embryonal hepatoblastoma cell lines carrying different mutations. At variance with adult hepatocellular carcinoma, in hepatoblastoma asparagine synthetase has no prognostic significance.


Assuntos
Glutamato-Amônia Ligase/biossíntese , Glutamina/metabolismo , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/biossíntese , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Éxons , Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamina/deficiência , Hepatoblastoma/genética , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , beta Catenina/genética
18.
J Inherit Metab Dis ; 44(5): 1226-1234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080208

RESUMO

The loss-of-function variants of the human asparagine synthetase (ASNS) gene cause asparagine synthetase deficiency (ASNSD). Diagnosis of ASNSD requires genetic tests because a specific biochemical diagnostic for ASNSD is not available. There are a few reports describing the functional evaluation of ASNS variants. Therefore, in vitro methods are needed to evaluate the detected variants in patients. In this report, five types of human ASNS proteins (wild-type and our reported four variants: p.Leu145Ser, p.Leu247Trp, p.Val489Asp, and p.Trp541Cysfs*5) were expressed in silkworm using a baculoviral expression system. An enzymatic activity assay of ASNS was performed, and the concentration of asparagine by ninhydrin and High Performance Liquid Chromatography methods using the purified recombinant proteins was measured. We established ASNS deficient HEK293 cells using the CRISPR/Cas9 method and evaluated the growth of cells without asparagine after transduction of ASNS variants with a lentiviral expression system. The four ASNS variants displayed significantly low enzymatic activity. The ASNS deficient HEK293 cells transduced with wild-type ASNS grew without asparagine, whereas cells transduced with the variants did not grow or showed significantly slower growth than cells transduced with wild-type ASNS. Herein, we established a method for evaluating the enzymatic activity of the recombinant human ASNS variants. The results of the cell-based assay corroborated the results of the enzymatic activity. These methods should enable the evaluation of the pathogenicity of ASNS variants.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Asparagina/metabolismo , Sistemas CRISPR-Cas , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/deficiência , Variação Genética , Células HEK293 , Humanos
19.
Sci Rep ; 11(1): 13114, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162900

RESUMO

The currently largest genome-wide association study (GWAS) for age-related macular degeneration (AMD) defines disease association with genome-wide significance for 52 independent common and rare genetic variants across 34 chromosomal loci. Overall, these loci contain over 7200 variants and are enriched for genes with functions indicating several shared cellular processes. Still, the precise mechanisms leading to AMD pathology are largely unknown. Here, we exploit the phenomenon of epistatic interaction to identify seemingly independent AMD-associated variants that reveal joint effects on gene expression. We focus on genetic variants associated with lipid metabolism, organization of extracellular structures, and innate immunity, specifically the complement cascade. Multiple combinations of independent variants were used to generate genetic risk scores allowing gene expression in liver to be compared between low and high-risk AMD. We identified genetic variant combinations correlating significantly with expression of 26 genes, of which 19 have not been associated with AMD before. This study defines novel targets and allows prioritizing further functional work into AMD pathobiology.


Assuntos
Epistasia Genética/genética , Loci Gênicos/genética , Degeneração Macular/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Via Clássica do Complemento/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Variação Genética/genética , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo
20.
J Biol Chem ; 296: 100780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000301

RESUMO

Macroautophagy (hereafter, autophagy) is a process that directs the degradation of cytoplasmic material in lysosomes. In addition to its homeostatic roles, autophagy undergoes dynamic positive and negative regulation in response to multiple forms of cellular stress, thus enabling the survival of cells. However, the precise mechanisms of autophagy regulation are not fully understood. To identify potential negative regulators of autophagy, we performed a genome-wide CRISPR screen using the quantitative autophagic flux reporter GFP-LC3-RFP. We identified phosphoribosylformylglycinamidine synthase, a component of the de novo purine synthesis pathway, as one such negative regulator of autophagy. Autophagy was activated in cells lacking phosphoribosylformylglycinamidine synthase or phosphoribosyl pyrophosphate amidotransferase, another de novo purine synthesis enzyme, or treated with methotrexate when exogenous levels of purines were insufficient. Purine starvation-induced autophagy activation was concomitant with mammalian target of rapamycin complex 1 (mTORC1) suppression and was profoundly suppressed in cells deficient for tuberous sclerosis complex 2, which negatively regulates mTORC1 through inhibition of Ras homolog enriched in brain, suggesting that purines regulate autophagy through the tuberous sclerosis complex-Ras homolog enriched in brain-mTORC1 signaling axis. Moreover, depletion of the pyrimidine synthesis enzymes carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase and dihydroorotate dehydrogenase activated autophagy as well, although mTORC1 activity was not altered by pyrimidine shortage. These results suggest a different mechanism of autophagy induction between purine and pyrimidine starvation. These findings provide novel insights into the regulation of autophagy by nucleotides and possibly the role of autophagy in nucleotide metabolism, leading to further developing anticancer strategies involving nucleotide synthesis and autophagy.


Assuntos
Autofagia , Sistemas CRISPR-Cas , Amidofosforribosiltransferase/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...